

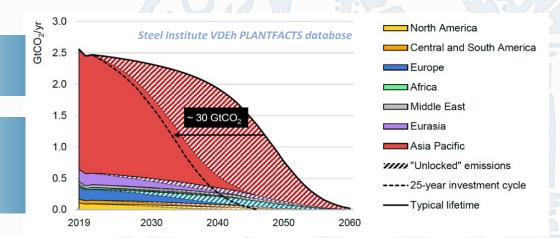
CO₂ transformation to synthetic fuels

Potential applications in the extractive industry sector

ANTONIS PEPPAS

Assistant Professor

8th Greek Raw Materials Community Dialogue "Raw Materials: From legacy to an innovative future"


Energy-intensive industries (Ells) CO₂ emissions

"To have a 50% chance of limiting global warming to 1.5°C and a 90% chance of keeping below 2°C, the **world must reduce** today's 50 Gt of total annual CO_2 -equiv. emissions to around **net-zero by mid-century**, with reductions of around 40% achieved by 2030"

Energy Transitions Commission – July 2022

- Primary and secondary steel emitted ~2.6 Gt CO₂ in 2020
- Process and energy emissions from petrochemicals accounted for ~1.6 Gt CO₂ in 2020

Putting CO₂ to Use

Extractive Industries: Creating value from emissions

Tees Valley industrial cluster

58% of the UK's EEIs

Includes steel, ammonia, hydrogen, ethylene, fine chemical and plastics production

- Worth £2.5 billion Gross Value Added.
- Responsible for **5.6%** of the **industrial emissions** in the **UK**.

Port Talbot (PT) steelworks emits 8 Mt of CO₂/year (15 - 20% of Wales's CO₂ emissions).

PT steelworks produces carbon dioxide, carbon monoxide and hydrogen.

Suitable for renewables, including option of offshore windfarm and multiple sources of high grade waste heat

Waste heat, renewable energy and carbon dioxide streams at PT steelworks and surrounding area are modelled as part of a project.

If the trials are successful could be replicated to other industries (e.g. cement industry).

Why Innovate?

CCUS in reaching net-zero

CO₂ capture capacity

CO₂ capture capacity

7–10 GtCO₂/year of CO₂ capture capacity will be required by **2050.**

Remaining CO₂ emissions

Of captured CO₂, around 65% relates to CO₂ from non-fossil fuel sources will need to be stored or used (e.g. cement process emissions).

The remaining 35% (2.5–4.0 ${\rm GtCO_2/year}$) would allow a significant but dramatically reduced scale of fossil fuel use (e.g. around 10 Mb/d oil, 90% below today's levels).

Carbon capture CCUS projects in Europe

Overview of existing and planned CCUS facilities

AUSTRIA

1. Vienna Green CO2*

BELGIUM

- 1. Leilac 1 2. Antwerp@C*
- 3. Carbon Connect Delta
- 4. Steelanol
- 5. C4U
- 6. North-CCU-Hub
- 7. Power-to-Methanol Antwerp BV
- 8. Kairos@C€
- 9. H2BE*

BULGARIA

1. ANRAV[€]

CROATIA

- 1. Petrokemija Kutina*
- 2. Bio-Refinery Project*
- 3. CCGeo[€]

DENMARK

- 1. Greensand*
- 2. C4: Carbon Capture Cluster Copenhagen

FINLAND

1. SHARC®

FRANCE

- 1. DMX Demonstration in Dunkirk*
- 2. Pycasso*
- 3. K6°
- 4. CalCC[€]
- 5. Cryocap
- 6. D'Artagnan

GERMANY

- 1. H2morrow*
- 3. BlueHyNow*
- 4. OXYFUEL100 (subproject of Westkuste100)
- 5. H2GE Rostock*

- 1. Prinos CCS
- 2. RECODE

ICELAND

- 2. Silverstone[€]
- 3. Coda Terminal⁶

ITALY

- 1. CCS Ravenna Hub*
- 2. Cleankerk

THE NETHERLANDS

- 1. Porthos*
- 2. Aramis* 3. H2M*
- 4. H-Vision*
- 5. Twence*
- 6. AVR-Duiven
- 7. AZUR*
- 8. L10 CCS

NORWAY

- 1. Sleipner CO₂ Storage*
- 2. Longship (including Northern Lights)*
- 3. Barents Blue*
- 4. Norsk e-fuel 5. Borg CO2*
- 6. Snøhvit CO2 Storage*
- 7. Smeaheia*

POLAND

- 1. Poland EU CCS Interconnector
- 2. Go4ECOPlanet[€]

REPUBLIC OF IRELAND

1. Ervia Cork CCS

SPAIN

1. ECC02

SWEDEN

- 1. Preem CCS* 2. Slite CCS
- 3. CinfraCap Project AIR[€]
- 4. BECCS@STHLM€

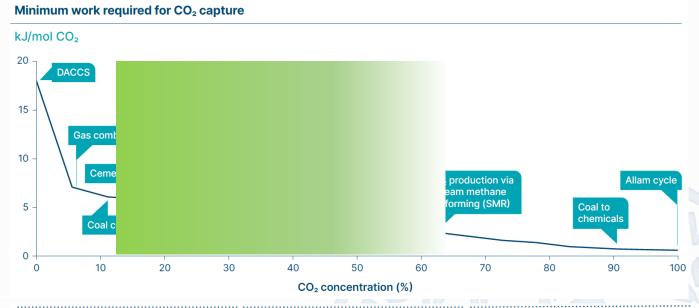
UK

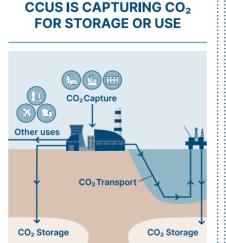
- 1. Acorn*
- 2. Caledonia Clean Energy 3. Zero Carbon Humber*
- 4. HvNet*
- 5. Net Zero Teesside*
- 6. South Wales Industrial Cluster
- 7. Peterhead CCS Power Station*
- 8. Acorn CO2 SAPLING*
- 9. Northern Endurance Partnership*
- 10. H2Teeside*
- 11. H2H Saltend*

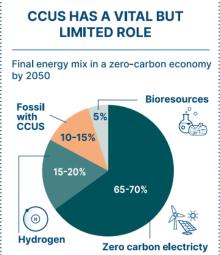
- € EU Innovation Fund (11 selected, 4 awarded)
- Projects listed in **bold** are in operation

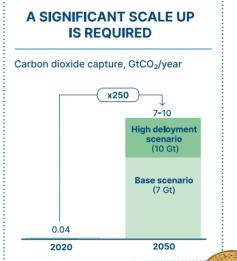
Total number of projects: 71 Around 80 MtCO₂/yr stored by 2030

Source: International Association of Oil and & Gas producers






CCUS limitations


Energy intensive process

Underground storage limitations

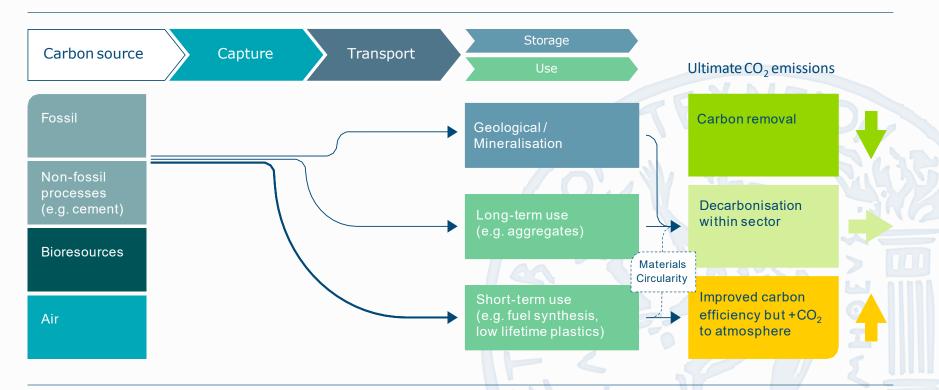
Porous rock formations called aquifers offer a more expensive and riskier storage option for a further 5,000 billion tones of CO₂ or 140 years of current emissions.

Care must be taken around the rate at which the CO₂ is pumped: if done too quickly the **porous rock can** fracture and release the gas.

If you store the CO₂ in liquid form at 100 bar pressure, every cubic meter of storage space will hold 0.6 tonnes of carbon dioxide.

It would require **160 million m³** of storage **per day** to capture **all CO₂ emissions** across the world.

For comparison, today's oil and gas industry extracts liquid fossil fuels at just one fifth of this pump rate with 14 million m³ of oil and 18 million m³ of natural gas extracted each day.

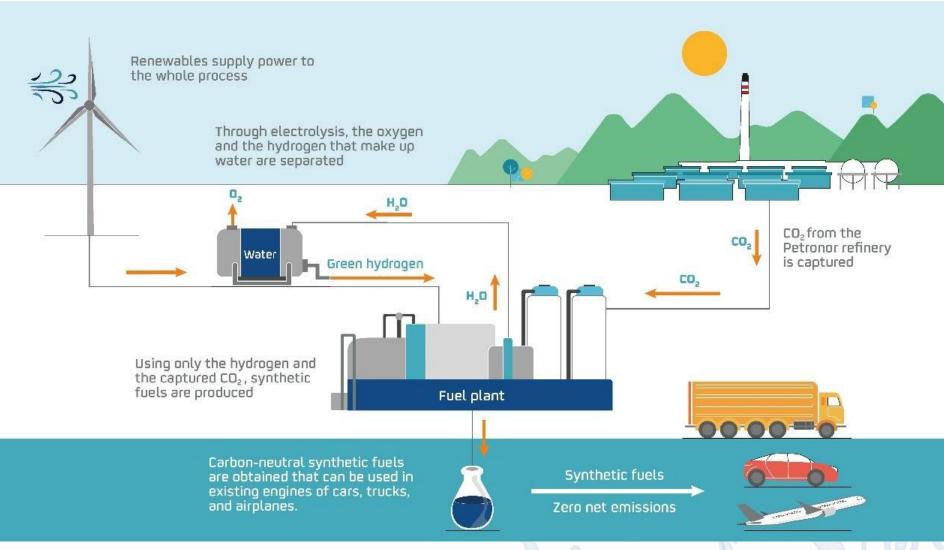


Iceland, €22 per metric tonne

Putting CO₂ to Use

Extractive Industries: Extend CO₂ lifetime as feedstock

Ultimate emissions of CO₂ from fossil combustion & industrial process



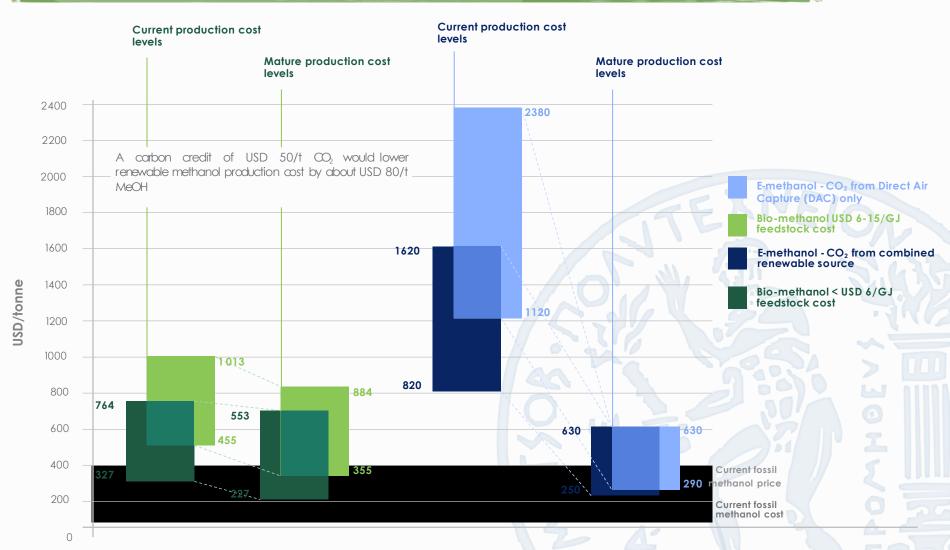
SOURCE: SYSTEMIQ for the ETC (2022)

Decarbonising transportation is considered crucial for a sustainability transition of the European wider energy system.

Within the EU the transport sector accounted for almost 1/4 of greenhouse gas emissions.

A promising solution is the use of synthetic fuels, such as hydrogen generated via electrolysis (PtG-hydrogen), biomass-to-liquid fuels (BtL) and power-to-liquid fuels (PtL).

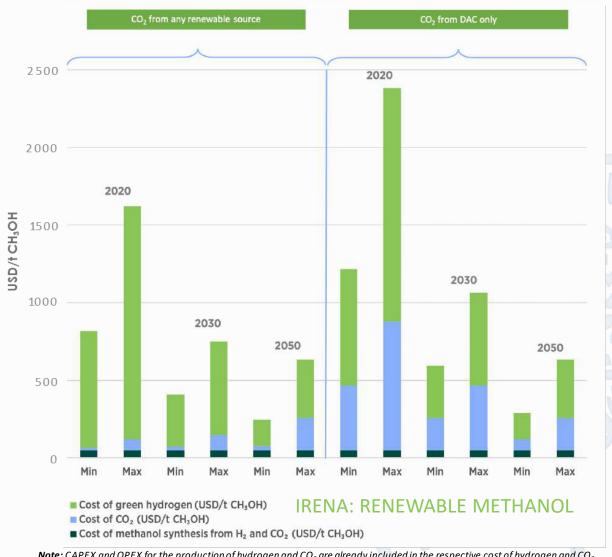
Following the Hydrogen Roadmap Europe, the ambitious deployment of green and low-carbon hydrogen can translate to a €130 bn industry for EU fuel and equipment companies by 2030 that could reach €820 bn by 2050.

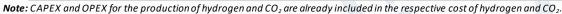


02

03

04



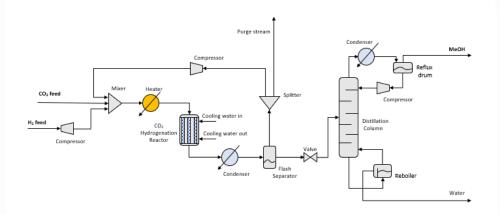


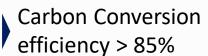
The world's first commercial scale CO₂-to-methanol plant has started production in Anyang, Henan Province, China.

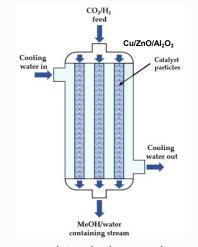
110,000 tonnes of methanol per year.

The new facility can capture 160,000 tonnes of carbon dioxide emissions a year, which is equivalent to taking more than 60,000 cars off the road.

The entire unit weighs around 84 tonnes or the weight of a fully-loaded Boeing 737.



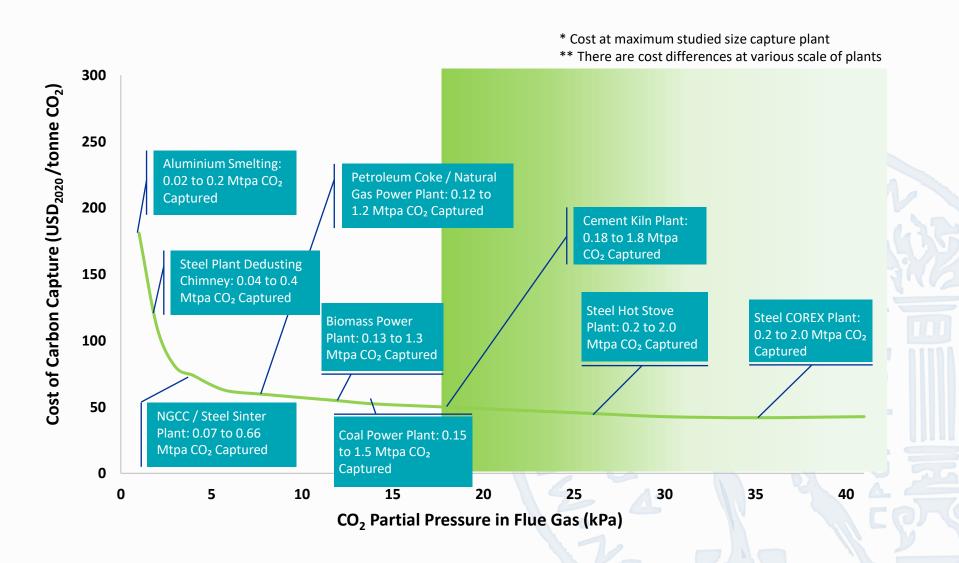




CO₂ to Methanol transformation Unit Modelling & Design

MeOH production efficiency > 45%

Multi-tubular catalytic Lurgi reactor


EAF off gases analysis		
Temperature	56.6 °C	
O ₂	20.78%	
со	56 ppm (70 mg/Nm ³)	
CO ₂	0.36%	
NO	2 ppm (2.68 mg/Nm ³)	
NO ₂	0.1 ppm (0.21 mg/Nm ³)	
NO _x	2.1 ppm (2.88 mg/Nm³)	
SO ₂	0 ppm	

CO ₂ to MeOH transformation system CO ₂ Hydrogenation Reactor Flash Separator Distillation Column CO ₂ 40-100 40-100 1-1.5	Components	Temperature (°C)	Pressure (bar)
Hydrogenation Reactor 220-300 40-100 Flash Separator ~30 40-100 Distillation ~30 1-1.5	CO ₂ to	MeOH transformat	ion system
Separator ~30 40-100 Distillation ~30 1-1 5	Hydrogenation	220-300	40-100
~30		~30	40-100
		~30	1-1.5
Reboiler ~110 1-1.5	Reboiler	~110	1-1.5
Reflux Drum ~64 1-1.5	Reflux Drum	~64	1-1.5

Project: 101058696-HEPHAESTUS HORIZON-CL4-2021-TWIN-TRANSITION-01

Optimising Carbon Capture Cost for Extractive Industries

a Living Lab

integrating renewables (solar & wind), H₂ production, use and storage facilities

for decarbonisation technologies

adapting AI and deep reinforced model training

targeting to advanced monitoring and hardware control

Prototype H, burner with a condensing boiler (60 kWth)

Energy storage capacity*: 1MWh

*Equivalent Electrical Energy ready to be delivered to the building through the Fuel Cell (Hydrogen storage at 200bar)

User friendly and fully automated
Energy Management and Monitoring System

40 kW CHP for residential applications (PEM Fuel Cell)

Enhancing cooperation and future perspectives

- ✓ The developed RES-H₂ hybrid energy system can be used as a full-scale research, development and testing facility of:
 - H₂ production, storage and consumption technologies
 - Energy management systems
- Existing demonstration site presents a great opportunity to attract interested parties for direct knowledge exchange, consultancy and joint initiatives
- Contribute to standardization activities at system level for residential buildings or districts of buildings

Public awareness

- TV documentaries broadcasted to more than 130 countries in 10 languages (Euronews, RAI TV5 and others)
- More than 25 articles published in Newspapers and Social Magazines
- Educational visits for students (more than 2000 students already hosted on site)
- Wide interest from Scientific, Governmental and investors representatives

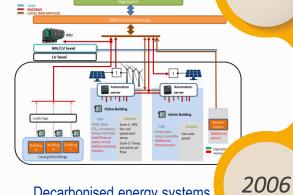
Milestones achieved

Policy recommendations published by European Union for applying a common methodology in accordance with Directive 2014/94/EU

Hellenic AFI ID registration system 2024

Integration of a containirised continuous plant for CO₂ capture and synthetic fuel production

2020


2016

Advanced monitoring and hardware control through Al and deep reinforced model training

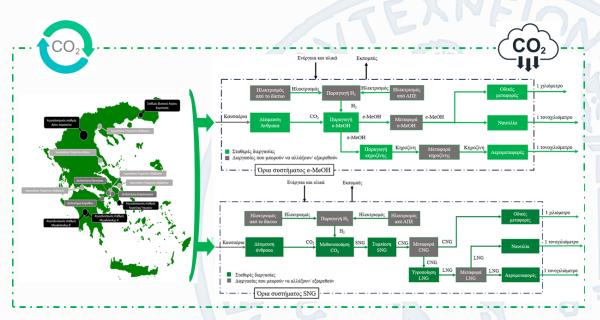
MV/LV microgrid deployment, 1400Ah OPC battery bank

2014

Decarbonised energy systems conceptualisation & design

2010

Integrated decarbonised hybrid energy system utilising green H₂ (55kg@200bar), zero emissions H₂ burner



Improve the maritime industry's environmental impact.

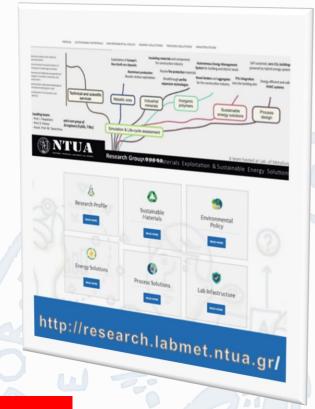
The program will focus on several key areas: developing alternatives to traditional fuels, improving energy efficiency in ships and ports, using new digital technologies to better manage operations, and encouraging recycling and the use of biofuels. Through this program, we aim to make shipping more sustainable and efficient.

Life cycle assessment & prefeasibility analysis for utilising SNG and e-MOH

Unit Leaders:

Em. Prof. loannis Paspaliaris
Processes design, simulation, technoeconomic
analysis and feasibility studies

@ paspali@metal.ntua.gr



Assoc. Prof. Maria Taxiarchou

Analysis synthesis and design of chemical processes for industrial minerals @ taxiarh@metal.ntua.gr

Assist. Prof. Antonis Peppas
Energy and Carbon footprint optimisation
@ peppas@metal.ntua.gr

Our activities:

- <u>Laboratory profile</u>
- [Scandium extraction from residues, Euronews broadcast]
- [Hydrogen based hybrid systems, Euronews broadcast, 3rd part of the video]
- o [Innovative construction materials]
- [Efficient HVAC for improved indoor environment]
- o [Smart Grid Demonstration]
- [Spin off, Ecosystem for upscaling and testing multifunctional lightweight concrete]